SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Program: S.Y.B.Tech (Civil)

Course Code: BS-BTC401

Duration: 3 Hours 716/24 Maximum Points: 100

Course Name: Probability, Statistics and Operation Research Semester: IV

Note:

- 1. Attempt Any Five Questions
- 2. Answers to the sub questions should be grouped together

			Questions		Poir	nts CO	BL	Mo dule
1	a	Out of 800 families with 4 expected to have (i) 2 boys two boys? Assume equal pro-	and 2 girls (ii) at l	east one girl (i		COI	BL5	2
	b	The equations of the lin $6x + y = 31$ Find $\overline{x}, \overline{y}$ and variance of x is 25.	-	-		COI	BL5	1
	C	Find Mean and Variance of	of Poisson Distrib	ution	8	COI	BL3	2
2	a	The mean height and the chosen soldiers are 166. corresponding values of si and 8.50 cm respectively. soldiers are, in general, sh	9 cm and 8.29 ix randomly chos Based on this dat	cm respectiven sailors are a, can we cond	ely. The 170.3 cm	CO2	BL5	4
	b	If θ is the acute angle between prove that $\tan \theta = \frac{1-r^2}{r} \cdot \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$ meanings.	ween the two reg	ression lines, t		COI	BL2	1
	C	Given the following infor	udents 8	C01	BL3	5		
			Mathematics	Physics				
		Mean	80	50				
		Standard Deviation	15	10				1

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester-Examination - June 2024

Γ	Τ	Correlation coefficient = 0.4			- <u>-</u>	
		Estimate				
		 (i) The marks of a student in mathematics who scored 60 in physics (ii) The marks of a student in physics who scored 70 in 				
		mathematics.				
	1			+	╁	
3	a	An automatic machine makes paper clip from coils of wire. On an average 1 in 400 clips is defective. If the paperclips are packed in boxes of 100, what is the probability that any given box of clips will contain (i) no defective (ii) one or more defective (iii) less than two defective clips?	6	C01	BL4	2
	b	A potential buyer of light bulbs bought 50 bulbs each of 2 brands.	6	C02	BL5	1
ļ		Upon testing the bulbs, he found that brand A had a mean life of				
		1282 hours with S.D of 80 hours, brand B had a mean life of 1208				
		hours with S.D of 94 hours. Can the buyer be quite certain that the				
		mean of the two brands differ?				
	c	In the usual notation, prove the Spearman's formula for Rank correlation	8	C01	BL5	1
		$R = 1 - \frac{6}{n(n^2 - 1)} \sum_{i=1}^{n} d_i^2$, where $d_i = x_i - y_i$				
4	a	Compute spearman's rank correlation coefficient for the following data	6	COI	BL5	1
		X 36 56 20 42 33 44 50 15 60				
		Y 50 35 70 58 75 60 45 80 38				
	b	An aptitude test for selecting officers in a bank is conducted on 1000 candidates. The average score is 42 and standard deviation of score is 24. Assuming normal distribution for the scores, find (i) The numbers of candidates whose scores exceed 60.	6	CO2	BL3	5

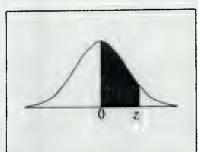
SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester-Examination - June 2024

		(ii) The numbers of candidates whose score lie between 30 and 60.				
	c	Find constant k such that the function $f(x) = \begin{cases} k(1-x^2), & \text{if } 0 \le x \le 1 \\ 0 & \text{elsewhere} \end{cases}$	8	COI	BL3	1
		is a density function. Also find $P(0.1 \le X \le 0.2)$ and $P(X \ge 0.5)$				
5	a	Certain pesticide is packed into bags by a machine. A random sample of 10 bags is drawn and their contents are found to weigh (in kg) as follows 50, 49, 52, 44, 45, 48, 46, 45, 49, 45 Test if average packing can be taken to be 50 kg at 5% LOS.	6	CO2	BL4,5	3
	b	A random variable takes values 1, 2, 3, 4 such that $2 \cdot P(X=1) = 3 \cdot P(X=2) = P(X=3) = 5 \cdot P(X=4)$, find the Probability Distribution, Mean and Variance.	6	COI	BL4	2
	c	Calculate the correlation coefficient between x and y from the following data $n = 10$, $\sum x = 140$, $\sum y = 150$, $\sum (x-10)^2 = 180$, $\sum (y-15)^2 = 215$, $\sum (x-10)(y-15) = 60$.	8	COI	BL2, BL4	1
5	a	In a binomial distribution with six independent trials, the probability of 3 and 4 successes is found to be 0.2457 and 0.0819 respectively. Find the parameters p and q of the binomial distribution.	5	COI	BL5	2
	b	A machine is set to produce metal plates of thickness 1.5 cms with standard deviation 0.2 cm. A sample of 100 plates produced by the machine gave an average thickness of 1.2 cms. Is the machine fulfilling the purpose?	5	CO2	BL3	4

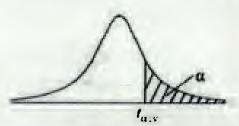
SARDAR PATEL COLLEGE OF ENGINEERING


(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester-Examination - June 2024

	c	Minimiz	e following LP1 e $Z = 2x + 3y$ o $x + y \ge 5$, s					10	CO3	BL3, BL5	5
7	a	Two ran	dom sample g	ave the	following	g data		5	C02	BL2,	4
			Sample No	Size	Mean	Variance				BL3	
			1	1500	67.42	2.58	-				
			2	2000	67.25	2.5	-				
			ference betwe								
	b	normal di	s obtained by st stribution with ents appeared a coring (i) less th	mean 4 t an exan	5 and stanination, o	ndard deviate the	tion 10. If number of	5	COI	BLS	3
	c		following LPP $Z = 3x + 2y + 5$		nplex Me	thod		10	CO3	BLI, BL3	5
		Subject to									
		x+2y	$+z \leq 430, 3x$	+2 <i>z</i> ≤ 46	50, $x+4$	$y \le 420, x, y$	$y, z \ge 0$				

Standard Normal Distribution Table



	z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
	0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
	0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
	0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
	0.3	.1179	.1217	1255	.1293	1331	_1368	.1406	.1443	.1480	.1517
	0.4	.1554	1591	1628	.1664	1700	.1736	1772	.1808	.1844	1879
	0.5	.1915	. 1950	. 1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
	0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549
	0.7	.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852
	0.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
	0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
	1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
	1.1	.3643	.3665	.3686	.3708	3729	.3749	.3770	3790	.3810	.3830
	1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
	1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
	1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
	1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
ſ	1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
	1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
	1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
	1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
	2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
ſ	2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857
	2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
	2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
	2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
L	2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952
	2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964
	2,7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974
	2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.4981
L	2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4986
	3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990
Γ	3.1	.4990	.4991	.4991	.4991	.4992	.4992	.4992	.4992	.4993	.4993
	3.2	.4993	.4993	.4994	.4994	.4994	.4994	.4994	.4995	.4995	.4995
	3.3	.4995	.4995	.4995	.4996	.4996	.4996	.4996	.4996	.4996	.4997
	3.4	4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4998
	3.5	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998

Gilles Cazalais Typeset with MEX on April 20, 2006.

Table of the Student's t-distribution

The table gives the value	es of $t_{w,v}$ where
$\Pr(\mathcal{T}_v \ge I_{u,v}) = \alpha$, with	v degrees of freedom

, a	0.1	0.05	0.025	0.01	0.005	0.001	0.0005
1	3.078	6.314	12.076	31.821	63.657	318.310	636.620
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4,297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1,796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1,761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1,746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1,330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1,717	2.074	2.508	2.819	3.505	3.792
23	1.319	1,714	2.069	2.500	2.807	3.485	3.767
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	1.311	1,699	2.045	2.462	2.756	3.396	3.659
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	1.296	1.671	2.000	2.390	2.660	3.232	3.460
120	1.289	1.658	1.980	2.358	2.617	3.160	3.373
x	1.282	1.645	1.960	2.326	2.576	3.090	3.291

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING (An Autonomous Institution Affiliated to University of Mumbai) Munshi Nagar Andheri (W) Mumbai 400058

End Semester Examination June 2024

116/24

Duration: 3 Hrs

Max. Marks: 100

Class: S.Y. B. Tech

Name of the Course: Environmental Engineering I

Course Code: BTC407

Instructions:

Question 1 is compulsory. Attempt any four questions out of remaining six

Draw neat sketches/diagrams wherever required, summary of design should be mentioned

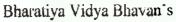
Assume suitable data if necessary and state them clearly

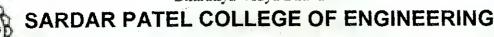
Figure on right indicate maximum points for the given question, course outcomes attained and Bloom's Level

Q1	Answer the following Questions	(20)	CO	BL
(a)	Explain the visit to Bhandup Water Treatment Plant with the flowsheet of the same. Provide details of sources of water and amount of water treated, the coagulants used, demand considered, the treatment flowsheet adopted with details and explanations of units and the amount in reductions at each stage.	(10)	CO1- CO4	3
(b)	Select the closest answers and show calculations for following questions :	(10)	CO3	3
1	The surface loading rate $(m^3/m^2/d)$ of 4 tanks with Length= 40 m, width= 8 m and height 3 m with a flow of 30 MLD is (i) $46.87m^3/d/m^2$ (ii) $93.75m^3/d$ (iii) $250m^3/d/m^2$ (iv) $23.43m^3/d/m^2$	(03)		
11	The quantity of 85% pure alum required (per year in kgs) for treating 60 MLD of water if alum required is 30 mg/L (i) 657.9 kg/year (ii) 772.9 kg/yr (ii) 7.73*10 ⁵ kg/yr (iv) 6.57*10 ⁵ kg/yr	(03)	. <u>, , , , , , , , , , , , , , , , , , ,</u>	
111	Calculate lime and soda ash required to remove 138 mg/L of MgCl ₂ (i) 49.2 mg/L; 66 mg/L (ii) 107 mg/L, 153.9 mg/L (iii) 35.5 mg/L, 106 mg/L (iv) 162 mg/L, 109 mg/L	(04)		
Q2	Answer the following questions	(20)		+
(a)	Classify water quality parameters. Enumerate sources and	(10)	CO1	З,
, ~ ,	effects of water pollutants (atleast six to seven). A story in TOI on 6 th May stated Notices were sent recently after the civic body observed poor quality of water. The Chief officer of Municipal corporation of Alandi, Pune <u>Sunil Bhumkar</u> said, "Oxygen level in the drinking water drawn from the river has reduced drastically due to the high level of hyacinth in the river. Therefore, we advised people to boil the water to avoid health issues." Is this statement correct as per your knowledge? Explain the actual need to boil	(10)		4

1 of 3

Semester: IV Program: B. Tech Civil


	the water? (There are several factories in nearby areas in Alandi and residential area too)	1		
b)	There are few industries and less development in rural areas of	(05)	CO1	
	India, Explain this question with respect to water supply schemes			
c)	Explain the urban water supply systems with respect to design, design life and basic institutional arrangement and design guidelines.	(05)	C01	4
		(20)		†
23 a)	Answer the following questions A bell mouth canal intake is to be designed for Ranikhet considering population of 6,00,000 and water demand of 130 lpcd (a) drawing water from a canal which runs for 9 hrs a day with a depth of 2 m. Calculate head loss in intake conduit if treatment works are 0.75 km away. Consumption of the town is to be considered 130 lpcd. Assume velocity through screens and bell mouth to be less than 16cm/sec and 32 m/sec. Also draw a neat sketch of design. v=0.85 $C_{\rm H}R^{0.6}3S^{0.54}$ (C _H = 130 dependent on pipe material, R is hydraulic mean depth and for circular section it is d/4; and S is slope of energy line or H1/L)	(10)	CO2	4
Ь)	In continuous flow settling tank 3.5 m deep and 70 m long, what is flow velocity of water that you would recommend for effective removal of 0.03 mm particles at 25°C. The specific gravity of particles is 2.65 and γ is 0.01 cm ² /sec. Check scour velocity too if Beta is 0.04 and friction factor is 0.03. Take 50 cm free board (actual H=3 m)	(10)	C01	
		(00)		+
Q4	Answer the following questions	(20)	CO4	4
(a)	You are an engineer at the Rankhet Municipal Council, located in the town of Rankhet (Uttarakhand). Your responsibility is to plan and design a water distribution network for a greenfield project in the region. Explain steps with figures and steps in detail how would you use QGIS, JalTantra, and EPANET to create an	(10)	04	
(b)	Design a mechanical rapid mix unit for a design flow to be treated as 500 m ³ /hr. Take value of μ as 1.0087E- ⁰³ Ns/m ² . Assume DT find volume. Find depth and diameter. Compute power requirements	(5)	CO2	2
(c)	Explain with short notes (i) Ion Exchange (ii) Coagulants	(5)	CO3	2
0				
Q5	Answer the following questions	(20)	A QQ	0
a)	Explain the concept Ideal Settling Tank in depth. Design rulear settling tank for the population of 6,00,000 for Ranikhet town having	(10)	CO2	2 3
(b)	average water demand 130 lpcd. Explain coagulation and flocculation. Design water depth for a slow mixing basin (gravity flocculator) having around the end baffles in order to treat 90 MLD. Tank is divided in two compartments by providing longitudinal partition wall and each half has a width of 10 m. Assume suitable detention times and flow velocities. Clear distance between baffles may be kept min permissible. Mention number of channels and overall length.	(10)	CO2	34
	Answer the following questions	(20)		


(a)	Explain the need of filtration and filtration mechanism. Design rapid sand filter for (size and underdrainage system) for the population of 6,00,000 for Ranikhet town having water demand 130 lpcd. Design wash water system too	(15)	CO3	3-5
(b)	Explain factors affecting disinfectant use and dose. Enlist disinfectants used in water treatment. Draw the graph of chlorine utilization. Find chlorine consumed in kg/day and chlorine dosage in mg/L for the city of Ranikhet in if the residual chlorine is 0.2 mg/L and a chlorine demand is 1.1 mg/L and average water demand of 130 lpcd and population 6,00,000.	(05)	CO3,C O4	2- 4
Q7	Give solutions to the following problems encountered in India	(20)		1
(a)	The content of fluoride is 7 mg/L. What are the typical values expected for drinking water and what are the implications? Explain how the problem can be solved for a remote village in India.	(05)		
(b)	It was observed that very high odor and color is visible in one of the sources in remote village in Maharashtra. How this problem could be solved in the village. Explain the processes that can be adopted for the same	(05)		
(c)	A rural well is to be disinfected. Explain the process for the same in detail	(05)		
(d)	In a far flung small town in India the only water available in sea water and ground water also has high amount of salt ingress. Which technique can be used in this town for generating drinkable water. Explain in detail with figures	(05)		

Formula Sheet

r ormula Sheet		
$P_{n} = P_{o} \left[1 + \frac{r}{100} \right]^{n} P_{n} = P_{o} + n\overline{x} + \frac{n(n+1)}{2} \overline{y}$	Al=27; Ca=40; C=12; O=16; S=32; Cl=35.5; H=1; Na=23; Fe= 55.5; Mg=24; Si=14	WLR=Q/B WLR= Q/2лR DT= V/Q
$\log_{e}\left[\frac{P_{s}-P}{P}\right] - \left[\frac{P_{s}-P_{o}}{P_{o}}\right] = -kP_{s}*t$	$G = \sqrt{\frac{P}{\mu * V}}$	SOR= 12-20 m ³ /d/m ² V= 0.849 C R ^{0.63} S ^{0.54} Leq = L ₅₀ +{ $(L_{10} - L_{90})^2$ / 60} NC = L ₁₀ - L ₉₀
$ \begin{array}{c} P_n = (P_o + n\overline{x}) \\ r = \sqrt{r_1 * r_2 * r_3 * \dots * r_n} \end{array} $	µ≖1.0087*10-³Ns/m²	SOR= $24-30m^3/d/m^2$ SA=volume/SOR G = $300-700s^{-1}$ 0.5 min to 1 min
Ratio of length to diameter of lateral ≤ 60 Spacing of laterals= spacing of orifices= 150 to 300 mm Dia of perforations 5 to 12 mm (spacing 80 mm for 5 and 200 mm for 12mm) <u>Total area of perforations</u> ≤ 0.5 Total c/s area of laterals	$v_{s} = \frac{1}{18} \frac{g}{v} (S_{s} - 1) * d^{2}$ Value of $v=1.002X10^{-6}$ m ² /sec $v_{d} = \sqrt{\left(\frac{8\beta}{f'}\right)(S_{s} - 1)dg}$ f' = 0.025 - 0.03 $g=9.8m/s^{2}$	Q/A; Q/ perimeter; Q/b; V/Q V= D^2 (0.011D+0.785H) Entire filter area Area of manifold= 1.5 to 2 times laterals Rate of filtration = 300 to 5001/hr/m ² Rate of filtration = 3000-
<u>Total area of perforation = 0.002 to 0.003</u>		$60001/hr/m^{2}$ Max. demand= 1.8 Q $G * t = \frac{v}{\varrho} * \sqrt{\frac{p}{\mu v}} = \frac{\sqrt{\frac{p v}{\mu}}}{\varrho}$

.....<u>3</u> of 3

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations: June 2024

S.Y.

Program: B.Tech, in Civil Engineering

Course Code: PC-BTC402

Duration: 3 Hours Maximum Points: 100

136/24

Course Name: Structural Mechanics

Semester: IV

- 1. Attempt any FIVE questions out of SEVEN questions.
- 2. Answers to all sub questions should be grouped together.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data if necessary and state the same clearly.

Q.No.	Questions	Points	со	BL	Module
Q.1(a)	A masonry chimney of hollow circular cross section is of height 6m. It has an external diameter of 2m and internal diameter of 1.5m. It is subjected to a horizontal wind pressure of 1.6 kN/m ² . Determine (i) the total wind force acting on the chimney. (ii) the bending moment at the base of the chimney due to wind pressure. (iii) maximum and minimum stresses developed at the base of the chimney. The unit weight of masonry is 20 kN/m ³ .		1	4	1
Q.1(b)	Using <u>Macaulay's method only</u> , find the slope at and vertical deflection at D for the beam supported and loaded as shown in figure below.	10	3	3,4	5
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Q.2(a)	State and explain Bette's theorem.	05	2	2	4
Q.2(b)	For the frame loaded as shown in figure below a) Find the support reactions b) Draw AFD, SFD & BMD	15	2	3,4	3
	$ \begin{array}{c} 20kN \\ B \\ 4m \\ 4m \\ 4m \\ 4m \\ 2 kN/m \\ D \end{array} $				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations: June 2024

Q.3(a)	beam supported and loaded as shown in figure below. <u>Use conjugate</u> <u>method only</u> .	10	3	3,4	5
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
).3(b)	Find the slope at A and vertical deflection at C for the beam supported and loaded as shown in figure below. <u>Use moment area</u> <u>method only</u> . Note that the flexural rigidity for AC=2EI and that for CB= EI.	10	3	3,4	5
	$ \begin{array}{c} 60 \text{ kN} \\ \hline $				
.4(a)	For the pin jointed frame loaded as shown in figure below, find the vertical deflection of joint D.	12	3	3,4	6
	$6 \text{ kN} \xrightarrow{\text{B}} C$ 4 m 4 m 4 m 4 m 3 m $\overline{\text{B}}$ 3 m $\overline{\text{E}}$				
4(b)	Find the strain energy stored in the truss when loaded as shown in the figure below.	08	2	3,4	4
	$ \begin{array}{c} 10 \text{ kN} & 15 \text{ kN} \\ B & C & 3 \text{ kN} \\ 4 \text{ m} & D \\ 3 \text{ m} & D \end{array} $				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations: June 2024

Q.5(a)	Locate the principal axes and find the principal moments of inertia for the cross section shown in figure below.	10	1	3	4 2
	100 mm 100 mm 100 mm 10 mm 10 mm 10 mm 10 mm				
	The angle section with dimensions shown below (same as given in Q. 5(a)) is subjected to a bending moment of 60 kN-m at 40 degrees to the positive X axis as shown in the figure. Find the location of the neutral axis and show it in the cross section. Find the maximum and minimum bending stresses and state their location in the cross section. (The properties of the cross section obtained in Q5(a) can be used. No need to calculate them again.)		1	4	2
	100 mm 10 mm				
6(a) [] fi	etermine the horizontal deflection of point D of the rigid jointed rame loaded as shown in figure below.	10	3	3,4	6
	$ \begin{array}{c} 10 \text{ kN} \\ B & 4m & 4m \\ 5m & C \\ 4m & 8m \\ \end{array} $				
	D				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations: June 2024

Q.6(b)	Find the crippling loads using (i) Euler's and (ii) Rankine's	10	4	3,4	7
	formulae for a steel column 4.0 m long with both ends fixed. The] -,.	
	cross section of the column is a symmetrical I section with the				
	following dimensions.				
	Top and hottom Flange width = 250 mm,		1		
	Top and bottom Flange thickness = 10 mm,		1		
	Depth of web = 280 mm, Thickness of web = 12 mm.]	1	
	Take $E = 2x10^{5} \text{ N/mm}^{2}$, $f_{c} = 350 \text{ MPa and}$		1		
	Rankine's constant = 1/7000.				
Q.7(a)	For the frame loaded as shown in figure below	12	4	3,4	3
	a) Find the support reactions				
	h) Draw AFD, SFD & BMD for mem hers AB and BC.				
	20 kN		-	1	
	B 1.5m C 2m				
	6 kN 2m				
	$A \xrightarrow{am} D \xrightarrow{b}$				
Q.7(b)	Find the Euler's buckling load for the structural steel column of	05	4	3,4	7
	hollow circular cross section with external diameter 250mm and		1		
	thickness of the cross section 15 mm. The length of the column is 3m.			i i	
	The column is fixed at one end and free at the other end. Take E= 200 GPa				
Q.7(c)	Write the expression for strain energy stored in a member due to	03	2	2	4
	shear force. Explain the terms involved in the expression				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester June 2024 Examinations

Program: S.Y. B. Tech. Civil

Course Code: PC-BTC404

Course Name: Surveying & Geomatics

Notes:

- 1. There are TOTAL SEVEN MAIN questions, each of 20 points.
- 2. QUESTION 1 is COMPULSORY.
- 3. From the remaining SIX Questions Solve ANY FOUR.
- 4. Assume suitable data, wherever necessary and State it clearly.
- 5. Write answer to each question on a new page.
- 6. Answers to be accompanied with appropriate sketches/facts & figures/table or chart/graph/diagram/flowchart wherever necessary or required.

Q. No.	Questions	Points	со	BL
1.	Answer the following:			
	 a Give (atleast two) civil engineering applications you have or you can work with the help of Geographic Information System (GIS). b. State, with a next elected, the formula (GIS). 	2	1	1,2
ļ	circular horizontal curve of radius 'R' and deflection apple the	3	1	1,2
ļ		3	1	1,2
ļ	platform,	3	1	1,2
ŀ	e State different types of satellite orbits.			
-	I. Explain, in short, what you mean by 'Setting out of build'	_3		1,2
	g With a neat sketch define: (i) triangulation survey and (ii) trilateration survey.	3	1	1,2
2.		3	1	1,2
-	 a. A circular curve has 300 m radius and 60° deflection angle. Compute the following elements of the curve : (i) length of the curve, (ii) tangent length, (iii) length of long chord, and (iv) mid-ordinate b. Explain in detail the Structter 6 Figure 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	4	4	3
-	and the stand of a stone in establishing a total	4	12	1.2
		4	1,3	1,2
╾╃	d. With a neat and detailed sketch, explain the phases of a remote sensing system.	8	<u>1,3</u> 1,3	1,2
,			_1,0	1,2
-	any GIS.	4	1,2	1,2
	vertical curve is to be introduced. The rate of change of grade is 0.4% per 100 m. Calculate the length of the vertical curve (2). Calculate the chainages at the initial and final tangent points (2) if the chainage at point of intersection is 1500 m. Calculate the elevations at initial and final tangent points (2), and vertex of the curve (1), if the reduce level (elevation) of point of intersection is 350.750m, respectively. Draw a neat sketch	8	1,4	3
	 c (1) Compute the scales, maximum, minimum, and average, of a photograph, if the highest terrain, average terrain, and lowest terrain heights are 610m, 460m, and 310 m above mean sea level (msi), respectively. The flying height above mean sea level is 3000m and 	8	1,4	3

1876) 29 Duration: 3hrs.

Maximum Points: 100

Semester: IV

Page 1 of 2

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai 400058

End Semester June 2024 Examinations

	the camera focal length is 152.4 mm. (3) (2) A vertical aerial photograph was taken from a flying height of 1385 m above datum with a 152.4 mm focal length camera. Two ground points A and B appear on the photograph, as 'a' and 'b', and their measured photo-coordinates are $x_a = -52.35$ mm, $y_a =$ -48.27 mm, $x_b = 40.64$ mm, and $y_b = 43.88$ mm. Determine the horizontal length of line AB if the elevations of points A and B are 204 and 148 m above datum, respectively. (5)			
4.	a. Explain the need of spatial analysis. (2) Give a real world example, where the spatial analysis can be performed by using a CIA analysis of the spatial spa	4	1,2	1,2
	 a maximum rate of change of radial acceleration of 0.3m/s³. Draw a neat sketch of the combined curve, showing all necessary elements (1) and calculate: Radius of the circular curve, R (2) Length of the cubic spiral transition curve, L₁(2) Shift S(1) 	8	1,4	3
-	 Distinguish between Geo-synchronous and Sun-synchronous orbit (4) and explain 'Global Positioning System (GPS) orbits' (type, no. of orbits, no. of satellites in one orbit & its altitude (4). 	8	1,4	1,2
5.	a Explain the 'attribute apart does not be		1	
	 a Explain the 'attribute query' (non-spatial) based spatial analysis. Give proper example, b With a neat sketch, explain the working principle of GPS in detail. c. State the methods of active working principle of GPS in detail. 	4	1,2	1,2
	c. State the methods of setting out (methods of GPS in detail.	8	1,3	1.2
	c. State the methods of setting out / ground tracing the outline of a foundation plan for a building (2). Explain any one of the methods, that you had adopted on the field, for setting out a given foundation plan. (6)	8	1,3	1,2
6.	le method of determining the local determining the			
	the method of determining the length of a transition curve. b. State the advantages (atleast 4) of using open source GIS, say Quantum GIS (QGIS). c. With a proper sketch, show and explain the draw of the draw	4	1.3	1.2
-	 With a proper sketch, show and explain the three segments of GPS. Distinguish between setting of the segments of GPS. 	4	1,2	1.2
	d Distinguish between active and passive segments of GPS.	6	1,2	- 1
	Indian remote sensing satellite system w.r.t. its date of launch and status at present (3).	6	1,2	1,2
7.	a Explain why a parabola is preferred as vertical curve profile (2) Give the emission for calculation the			·····
+	and a support for calcinating the length of the sector	4	1,4	1,2
	and collocation and collingenerate (1) of actions to that it is the	4	1,3	1 2
	 c. Explain the signal system of GPS and its characteristics d. (1) Define: (i) Fiducial model 	6	1,5	1,2
	 d. (1) Define: (i) Fiducial marks on an aerial photo (1) and (ii) Principal point on an aerial photo (1) (2) Explain different ways to determine the photographic scale. (4) 	6	1,3	1,2

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058. End Semester Examinations, June 2024

2016

S.Y. Pro gram: B.Tech. Civil Engineering Course Code : PC-BTC403 Course Name : Concrete Technology

Duration: 3 Hour Maximum points: 100 Semester: IV

Instructions:

- Attempt any FIVE questions out of SEVEN questions 1. 2.
- Answers to all sub questions should be grouped together 3.
- Draw neat diagrams wherever required 4,
- Assume suitable data if necessary and state the clearly. Que Desoranti

No					-	-	
	(a) "Ready mix Conc	prete turns out to be a boo	n for Indian construction	Points	CO	BL	PI
Q1	functions you have of (b) How Core test h	bserved during site visit.	various units and their	10 06 04	3	2	1.2.1 2.1.2 1.2.1
		een High and low densit			-		A value (b
	the second se			5	1	3	1.3.2
	10262:2019 for th	for M25 grade using gui te following data.	delines given in IS	15	2	2	2.3.1
Q2	Exposure condition: Moderate	Maximum size of aggregate -20 mm	Method of placement -	Specific	gravit	v of 2	
.	Strength of cement	Workability -	crane and bucket	aggrega	te (M_2)	-2.80	
	OPC -43 grade Zone of sand -1	slump, 120 mm	Type of coarse aggregate — angular coarse aggregate	Specific aggregat	gravit te (M ₁)	y of 1(2.2) mm 70
		Water absorption. M_{2} -1.8% & M_{1} - 1.3% Total moisture content M_{2} -0.7% & M_{1} - 0.8%	Water absorption fine aggregate- 3.2% Total moisture content	Specific aggregat	gravi e — 2.	ty of 68	fine
Q3	(a) Design concrete for from Que2 and chart att	M 25 grade using DOE	in fine apprenate - 2.6 % method. Refer the data script.	12	3	4	2.1.2
	detail the procedure for	conducting Half-cell pote	in concrete? Explain in	08	2	2	2.4.2
24	(a) Design concrete for data related to the pro-	r M30 grade using ACI	Method; consider the	12	2	3	1.3.1
	(b) How the composition properties of cement?	on of Alite, Belite, Celite	and Felite controls the	8	1	2	2.3.1

Q5	 (a) State the advantages of concrete compaction. Explain different ratheds for compaction of concrete in detail. (b) Comparison between 	12	T	2	2.13
_	(i) SRC and RHC (ii) Hand mixing vs. Machine mixing	8	2	2	2.3.
	(E1) What are the benefits of High Performance communication	10	-		1
			1.37	2	2.3.1
Q6	(b) Explain the effect of w/c on strength, durability and workability of concrete.	6	1.2		1
	(c) How Silica fume act as sustainable material to improve the		3	3	1.3.2
		4	2	3	1.4.1
ĺ	Write explanatory notes on the following (any Four) i) Constituents of HPC	-			1.1.1
	by Constituents of HPC	5	3	2	1.3.1
Q7	ii) Ultrasonic pulse velocity test iii) pH test of concrete	5 1	2	2	1.3.1
	iv) Testing of chemical admixture	5	3	2	13.1
	v) Hydrophobic cement	5	1	2	1.3.1
	vi) Characteristics streng th of concrete	5	1	2	1.3.1
		5	3	2	1.3.1

Table 1,2 and 3 for ACI Method Concrete Mix Design (1) Dry Bulk Volume of coarse aggregate/ unit volume of

(2) Relation between water/cement ratio & average

concrete as per AC 211.1-91

rete for	300	044	053	0.60	0.81
Bulk volume of dry rodded CA /unit volume of concrete for fineness modulus of sand of	2.8	0.46 0	0.55 0	0.62 0	0.83 0
of dry rodded CA lunit volume fineness modulus of sand of	2.6	0.46	0.57	0.64	0.85
Bulk volume o	24	0.5	0 59	0 66	87
Max mum s ze of nggregate	FM	10	12.5,) (25.40 50.70)	150

Minimum Jesign strength, Iow density aggregate concrete	MPe	សន	8	9	
Maximum w/c ratio, normal density aggregate concrete		05 045	045	04	
Exposure cond iton	Concreta intended to be	waterbyn (a) Exposed to fresh water (b) Exposed to sea water	Concreta axposed to freezing in a moist condition	For corresion protection of reinforced concrete exposed to de icing selfs, see water	
Effective water/cement ratio (by mass)	Ar entrained concrete			0.4	0.71
Effect ve water/cer	Non a r entra hed concrete	0.38	0.43	0.48	0.8
Average compressive strength at 28 days	MPa	45	40	35 (30,25,20)	15

Table 4,5 and 6 for ACI Method Concrete Mix Design (4) Recommended value of slump for various

types of construction as per ACI 211.1-91

Manual	or alt content	(cmu s)	a lun	160-180	Approx
Range of stump (mm)	20-80	20-80	20-100	20-100	20-80
lype of construction	Re nforces foundation wa's & footings	Piain footings substructure wai	Beams & re nforced wa's	Burding columns	Pavements & s'abs

20-80

Mass concrete

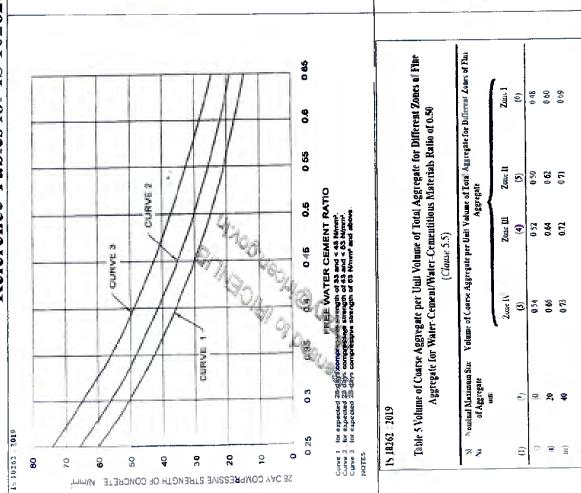
(5) Approximate requirements for mixing water & air content for different workabilities & nominal maximum size of aggregates as per AC1211.1-91

Worksbirty or alt content or alt content (26, 40, 50, 70)Water content kym3 of concrete for indicted max mum for mm 2,5 mm 2,5 mm 2,0 mm150 mm 150 mm 150 mm30-50 mm 20-50 mm25,40,50,70)19515030-50 mm 20-50 mm20521520014030-50 mm 20-50 mm22521520014030-50 mm 20-100 mm230215200140160-180 mm 200230230210-160-180 mm 100230230210-160-180 mm 100230230210-		Nan .	Non « Ir entra ned concrete	ncrete	
10 mm 12.5 mm 20 mm 11 mm (25, 40, 50, 70) 200 145 125 205 215 200 140 225 215 200 140 240 230 210 140 3 2.5 2 0 2	Workeb IV or alt	Water content aggregate siz	t ky/m3 of cone	ctete for tridicte	ed max mum
205 200 185 125 225 215 200 140 240 230 210 - 3 2.5 2 0.2	(S um.)	10 mm (25, 40,50,70		mm (12	150 mm
225 215 200 140 240 230 210 - 3 2.5 2 0.2	30 - 50 mm	205	200	185	125
240 230 210 - 3 2.5 2 0.2	80-100 mm	225	215	200	140
3 2.5 2 0.2		240	230	210	4
	Approx entrapped	3	2.5	N	

(6) First estimate of density of fresh concrete as per

AG 211.1-91

-

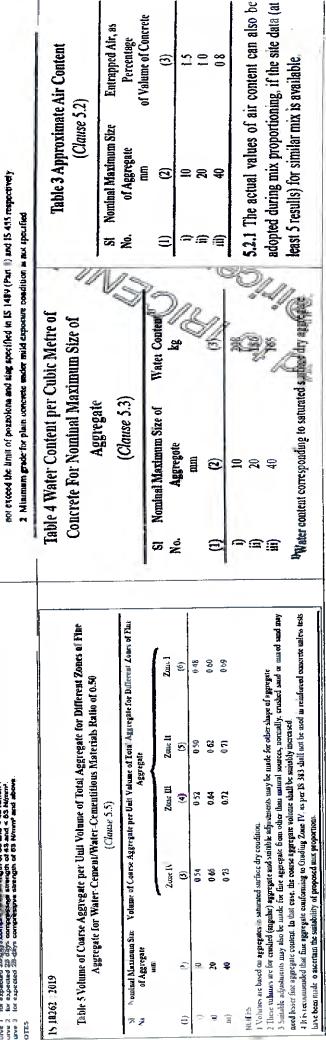

First estimate of density of heah concrete

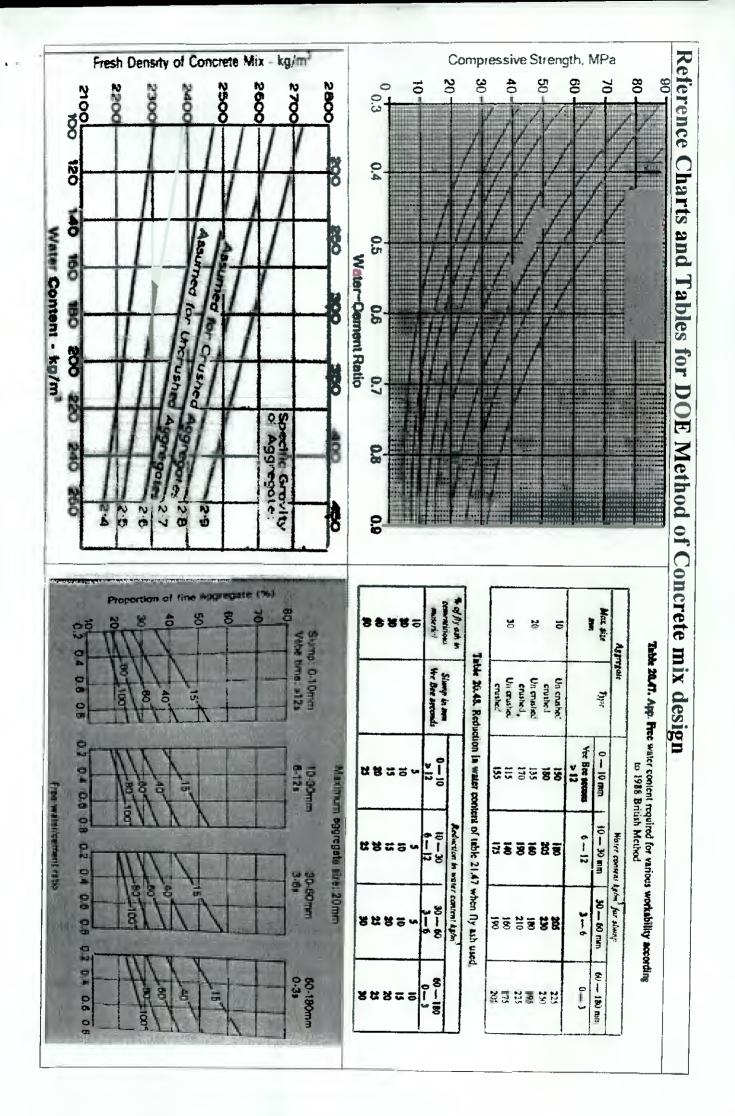
ximum size of

aggregate (mm)	していたます	
	Non eir entra ned kg/m ^J	Air entra red kg/m ³
10-	2285	2190
12 5 (20 25 40 50)	2315	2235
20.	2055	2280
150	2505	2435

(3) Requirements of ACI-318-89 for w/c ratio &

Reference Tables for IS 10262:2019 Method of Concrete mix design




Table 5 Minimum Cement Context, Maximum Water-Cement Ratio and Minimum Grade of Concrete for Different Exposures with Normal Weight Aggregates of 20 mm Nominal Maximum Size

(Clauses 6 1.2. 8 2 4 | and 9 1.2)

л ź	Exposite		Plain Concrete			Relatorced Concrete	2	
		Minimum Contrait Kym	Maximem Free Water- Cernent Ratio	Main 411 Grade of Concrete	Maumum Concat Conten kg/m ¹	Maxinutu Free Water Cernent Rado	Mint run Grade of Concrete	
=	(2)	e	(*)	6	(9)	0	(8)	
ŧ	Mild	20	09:0	£	00	0.55	M 20	
(#	Modernie	240	0.60	M 15	90	0.50	M 21	
(H)	Sever	200	0.0	M 20	021	0.43	W W	
Ā	Vary Kven	Â	0 45	M 20	940	0.45	MAT	
ç	Extrem	2 80	040	N 25	090	040	M 40	
2	NOTER							
		and the second sec		2 W.				

1 Centrel content prescribed in this table is interpretive of the grades of content and is an industive of additions intentioned in 5.2. The additions such as fly use or ground granulated blast furtuance stag may be taken into account in the constrate compositions with respect to the content and west-content ratio if the unitability is established and as lesg as the maximum nurousts taken into account do not exceed the limit of pozoolone and stag specified in 15.4. It is not exceed the limit of pozoolone and stag specified in 15.1489 (Part II) and 15.455 respectively.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations June 2024

(2023-24)

Program: S.Y. B. TECH

Course Code: PC-BTC-405

Course Name: HYDRAULIC ENGINEERING

Notes:

- Attempt **any five** questions.
- Answer to all sub questions should be grouped together.
- Figure to right indicates full marks.
- Assume suitable data wherever necessary and state it clearly.

Q. No.	Questions	Points	со	BL	Module
	(a)Explain: Scale effects, distorted and undistorted models, and laws of similarities in dimensional analysis.	10	4	2	1
1	(b) The rate of flow 'Q' over a triangular notch is found to depend on the head of water 'H' above the vertex, the density ' ρ ', the kinematic viscosity 'u', the surface tension ' σ ' of the fluid, ' θ ' the angle of the notch and 'g' the acceleration due to gravity. Express a functional relationship for 'Q' in terms of other variables given. Use any one method of dimensional analysis.	10	4	4	1
<u></u> ,	(a)Explain the phenomenon of water hammer flow in pipelines and derive an expression for pressure rise (Pi) using elastic pipe theory.	10	1	3	2
2	 (b) (i) Express different types of minor losses in pipe flow in terms of the velocity head with neat sketches. (ii) Two reservoirs are connected by a pipeline consisting of two pipes, First pipe is of 15 cm diameter and length 10 m and the second pipe is 25 cm diameter and 16 m length. If the difference of water levels in the two reservoirs is 12 m, calculate the discharge. Take f = 0.022. 	05 05	1	4	2
3	(a)Prove that in case of jet of water striking at the center of the moving semi-circular curved vane, the maximum efficiency is less than 60%.	10	1	4	3

MbM Duration: 03 Hrs. Maximum Points: 100 Semester: IV

Page 1 of 2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examinations June 2024

(2023-24)

, N	(b) A jet of water with a velocity of 42 m/s impinges without shocks on a series of vanes moving at 15 m/s. The direction of motion of the vanes is inclined at 20° to that of the jet, given $Vr_1 = 0.92$. Vr and absolute velocity of water at exit is to be normal to the motion of vanes. Find: (i) θ and Φ angles; (ii) work done per Newton of water and (iii) η_h .	10	1	5	3
	(a)Derive an expression for work done and hydraulic efficiency of Pelton wheel turbine. Draw velocity triangles.	10	2	2	4
4	(b) The penstock supplies water from a reservoir to Pelton wheel with a gross head of 480 m. One third of gross head is lost in friction in penstock. The rate of flow of water through the nozzle is $5 \text{ m}^3/\text{s}$. The angle of direction of jet is 165° . Determine power given by water to runner and also hydraulic efficiency of Pelton wheel. Take speed ratio = 0.46 and Cv = 1.0.	10	2	4	4
	(a)Explain: (i)Performance of turbine under unit condition, unit quantities	05	2	2	4
	(ii) Cavitation in Reaction turbine and theory of draft tube	05	2	2	4
5	(b) In an inward flow reaction turbine the diameter at inlet and outlet are 1.20m and 0.60 m. The hydraulic efficiency = 92%. Head = 45m. The velocity of flow at outlet = 2 m/sec. The discharge at outlet is radial. The vane angle at outlet is 150. Flow width is 0.10 m. at inlet and outlet. Determine (i) the guide blade angle (ii) vane angle at inlet	10	2	4	4
	 (a)Explain: (i) Priming of a centrifugal pump and Manometric head; (ii) Pumps in parallel, series and multistage pump. 	05 05	22	2 2	5 5
6	(b) A centrifugal pump lifts water under a static lift of 45 meter of which 5 meter is suction lift. The suction and delivery pipes both are 20 cm in diameter. The friction loss in suction pipe is 3 meter and in delivery pipe it is 5 meter. The impeller is 50 cm in diameter and 30 mm wide at outlet and runs at 1000 rpm. The exit blade angle is 22 degrees. If the manometric efficiency of the pump is 85 %, Determine: (i)Discharge from a pump; and (ii)Pressure at the suction and delivery ends of the pump.	10	2	3	5
	(a)Define prismatic and non-prismatic channel and Explain	10	3	4	6
7	types of flow in open channel. (b)Derive Chezy's equation for velocity of flow in open channel. Draw neat sketch.	10	3	4	6

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION JUNE 2024

Program: SY B.TEC. (C/E)

Duration: 3 Hours

Course Code: IK-BTM201

Course Name: Indian Traditional Knowledge.

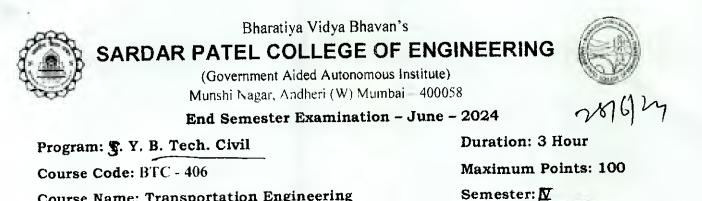
Note: Attempt Any Five Questions

Ouestions Points CO BL Module Q.No. No. **Complete the Statements by Selecting Proper 1A Options.** 10 2 4 1 The Constitution of India adopted in 1950 which enshrines the principles of democracy, secularism and ------. 1 a) Anarchism b) Federalism c) Communism d) Unitary State Indian Mathematicians such as Aryabhata, Bhaskara and made Pioneering advancements. 2 a) Chandragupt b) Samudragupt c) Brahmagupt d) Shivgupta Refers to the study of Meaning in Language and interpretation of words, Phrases and sentences. 3 a) Phonology b) Syntax c) Semantics d) Morphology Beals with procedures of rituals, ceremonies and sacrifices. 4 a) Yajur veda b) Rig Veda c) Sam veda d) Atharva veda The iron pillar of Delhi, dating back to the---- period stands as a testament to the forging corrosion-resistant iron 5 a) Mauryan b) Rashtrakuta c) Gupta d) Kanishka is the traditional Indian science of warfare and martial arts. a) Gandharva veda b) Dhanur veda c) Sthapatya Veda d) Ayur 6 veda Sahita Provided Comprehensive knowledge about anatomy, diseases and treatments. 7 a) Sushruta b) Bhaskara c) Nagaurjuna d) Yaska

Maximum Points: 100

Semester: IV

NBM


SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION JUNE 2024

8	The outlook involves to adopt a rational and evidence- based approach. a) Scientific b) Spiritual c) Metaphysical d) Theological				
9	is a traditional practice in yoga consisting breath control. a) Acupuncture b) Chiropractic c) Pranayama d) Niyama				
10	focuses on the meters and poetic structure of the vedas. a) Nirukta b) Shiksha c) Kalpa d) Chandas				
1 B	Answer the Following	10	3	2	4
A	What are the benefits of Yoga Asanas?				4
B	Define the empirical approach to science.			<u> </u>	
С	Name the ancient Indian cities known for urban planning.				
D	What are the Three doshas emphasized by Ayurveda?				
E	Define Phonology in linguistics.				<u> </u>
2A	Write about Yoga and Pranayama	10	3	2	5
B	Narrate the types of Vedangas	10	2	1	2
3A	Write a note on Scientific Outlook and Haman Values.	10	4	1	3
B	Explain the ancient Indian engineering knowledge	10	3	2	4
4A	Explain the Relevance of Science and Spirituality.	10	1	- 2,	2
B	Give an account on Sankya Philosophy	10	4	3	
5A	Analyze the major branches of linguism.	10	2	3	7
B	Discuss the Fundamental Unity of India	10	4		
6A	Give an account of Four Vedas	10	2	4	<u> </u>
B	Describe the heroic role of India in World Civilization	10	-		
7	Illustrate the Philosophy of the Following. (Any Two) a) Gautam Buddha b) Kabir c) Kanad d) Mahaveer	20	<u>3</u> 4	3	 6

Course Name: Transportation Engineering

Notes:

- Question 1 is compulsory (i)
- Solve any four out of remaining six questions (ii)
- Assume suitable data if required (iii)

Q.No.	Questions		со	BL
Q.1				
(a)	Discuss the advantages and disadvantages of air transportation	06	1	1
(b)	Discuss the requirement of railway station	07	1	2
(c) Q.2.	Discuss wing of the aircraft with respect to (i) lift to drag ratio, (ii) surface area, (iii) aspect ratio, (iv) camber shape of wing	07	1	2
(a)	The length of runway under standard condition is 2400 m. the airport is to be provided at an elevation of 380 m above mean sea level. The gradient need to be provided at the site under consideration is given Table 1. The mean value of average daily temperature and maximum daily temperatures in the different months of year are given in Table 2. Apply the necessary correction as per ICAO and FAA and calculate the corrected length of runway.	12	1	3
(b)	Discuss with sketch aircraft parking system.	08	1	2
Q.3.				
(a)	Discuss different types of aircraft parking configuration. Also, state the advantage and disadvantage.	10		3
(b)	Design an exit taxiway joining runway and parallel main taxiway. The total angle of turn is 30 ⁰ and turning speed 95 km/hr. Also, draw a neat sketch showing all design elements.	10	2	2

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination - June - 2024

Q.4.				
(a)	What is super elevation? Derive the relationship between super elevation, speed, Gauge and radius of circular curve for Broad Gauge, Meter Gauge and Narrow Gauge type railway track. What are its limiting values for different gauges?	10	2	3
-	A 5° curve diverges from 2° main curve in reverse direction in a layout of			
(b)	broad gauge yard. If the speed on branch line is restricted to 30 km/hr. determine the restricted speed on main line.	10	2	3
Q.5				
(a)	Discuss with neat sketch different types of rail	06	ł	4
(b)	What is creep of rail? How will you measure?	06	1	2
(c)	Explain with neat sketch coning of wheels and tilting of rail.	08	1	4
Q.6.		• • • • • • • • • • • • • • • • • • •		
_(a)	write short notes on (i) weight of rail (ii) Length of rail	05	2	
(b)	Discuss about speed of train in India. Also, state the equations suggested by Indian railway for safe speed of train on curve when (i) Transition curve is present (ii) transition curve is absent.	08	2	
(c)	Calculate the number of rails, number of sleepers, number of fish plate and fish bolt required for construction of 1 km long broad gauge type and meter gauge type railway track. (Assume sleeper density = $n + 5$)	07	2	
Q.7.	Write short notes on (any 4)			
(a)	Discuss the Characteristics of Aircraft.	05	1	
(b)	Take off climb surface	05		
(c)	Site selection for railway station	05	1	
(d)	Ballast and its requirement	05		-
(e)	Advantage and disadvantage of wooden sleepers.	05	1	

Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination - June - 2024

		T HOLE			
End to end runway length (m)	0 to 300	300 to 1200	1200 to 1800	1800 to 2400	2400 to 3500
Gradient (%)	+ 1.0	- 0.50	+ 0.50	- 0.60	+0.50

		Table 2.			
Month	Mean value of average daily temperature	Mean value of Maximum daily temperature	Month	Mean value of average daily temperature	Mean value of Maximum daily temperature
Jan	3.00	5.50	July	32.6	37.7
Feb	15.5	17,0	Aug	30.5	35.5
Mar	20.0	23.4	Sept	27.4	31.5
Apr	25.6	32.3	Oct	22.8	28.3
May	37.7	47.4	Nov	12.9	18.0
June	40.4	50.60	Dec	6.70	12.3

Table 1.